

Optical spectra and crystal field calculations of $^{Nd^{3+}}$ doped Zircon-type YMO_4 laser hosts ($^{M = V}$, P, As)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 6491

(http://iopscience.iop.org/0953-8984/10/29/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.209 The article was downloaded on 14/05/2010 at 16:37

Please note that terms and conditions apply.

Optical spectra and crystal field calculations of Nd^{3+} doped Zircon-type YMO₄ laser hosts (M = V, P, As)

O Guillot-Noël[†], A Kahn-Harari[†], B Viana[†], D Vivien[†], E Antic-Fidancev[‡] and P Porcher[‡]

† Chimie Appliquée de l'Etat Solide, ENSCP, CNRS-UMR 7574, 11 rue Pierre et Marie Curie, F-75231 Paris Cédex 05, France

‡ Chimie Métallurgique des Terres Rares, UPR 209, 1 Place Aristide Briand, 92195 Meudon Cédex, France

Received 4 March 1998

Abstract. Low temperature absorption spectra of Nd^{3+} doped YVO₄, YPO₄ and YAsO₄ single crystals, grown by the flux method, are reported. A simulation of the energy level scheme is carried out. The effective Hamiltonian includes elementary interactions such as coulombic, spin–orbit, two- and three-body interactions. The crystal field effect is introduced through the five non-zero crystal field parameters allowed by the D_{2d} symmetry site occupied by the rare earth. A simulation is performed on the 96 (102, 90) experimental energy levels of YVO₄, (YPO₄, YAsO₄) with a good rms standard deviation of 16.2 (15.4, 15.7) cm⁻¹. It is noteworthy that the energy level scheme of YAsO₄ is reported for the first time. The wave functions of the systems are used for the calculation of the magnetic factor *g*. These factors are in good agreement with the values deduced from EPR measurements on the Nd³⁺ lowest level ⁴I_{9/2}. The crystal field parameters are also compared to the *a priori* parameters calculated using the simple overlap model and the correlated crystal field strength is also analysed.

1. Introduction

Nd:YVO₄ with zircon-type structure has found renewed interest in the last years as a laser material [1–4]. This is mainly due to strong absorption and emission cross sections. Nd:GdVO₄ presents similar optical features though with a few differences on the cross section intensity and crystal field strength [5] (for the ${}^{4}F_{3/2}$ emitting level, the energy levels splittings are $\Delta E = 6 \text{ cm}^{-1}$ for Nd:GdVO₄ and 18 cm⁻¹ for Nd:YVO₄). The Nd³⁺ 810 nm broad absorption band observed at room temperature can be explained by the relatively small crystal field strength in these matrices [6]. In isostructural compounds i.e. YPO₄, YAsO₄, Nd³⁺ ions present properties close to those found in YVO₄ [6]. Moreover, to our knowledge, the spectroscopic characteristics of Nd³⁺:YAsO₄ have not yet been reported in the literature. Then, it appeared of interest to compare the energy level schemes derived from experiment and their simulation within the crystal field (cf) theory frame. Moreover, the knowledge of a numerical expression of the wave functions associated with each level offers the opportunity to calculate physicochemical properties in which they are involved such as *g* tensor principal values, deduced from EPR measurements. A comparison in the series provides an interesting test of the validity of the model.

0953-8984/98/296491+13\$19.50 © 1998 IOP Publishing Ltd

6491

2. Crystallographic background

YVO₄, YPO₄ and YAsO₄ belong to the zircon-type structure (ZrSiO₄, also called xenotime), with tetragonal symmetry. The space group is $I4_1/amd$, with four formula units in the unit cell. In this host lattice, Y³⁺ ions are eightfold coordinated by oxygen ions, forming [YO₈] dodecahedra, and the [MO₄] group is a distorted tetrahedron. The structure can be described as chains parallel to the *c* axis of alternating edge-sharing [MO₄] tetrahedra and [YO₈] dodecahedra (figure 1). [YO₈] can also be viewed as two interlaced tetrahedra. The optically active neodymium ion is located on the Y³⁺ position with a D_{2d} site symmetry (figure 1). With respect to the effective ionic radii of the various M ions involved in the [MO₄] group (table 1), one can expect rather similar arrangements of bond lengths and angles for the three hosts.

Figure 1. Tetragonal unit cell of YMO₄ (M = V, P, As). MO₄ groups are schematically represented by tetrahedra; oxygen ions around the central yttrium of YO₈ polyhedra are also indicated. Nd³⁺ doping ions lie on the Y³⁺ sites. (Empty circles are O²⁻ and black circles are Y³⁺.)

3. Experiment

3.1. Single crystal elaboration

The crystal growth was performed by the flux method, which is the most appropriate for compounds having either non-congruent melting or very high melting points. Moreover, one supplementary limitation was to elaborate crystals of the three matrices in conditions as similar as possible, in order to make the most realistic comparisons in the crystal series.

YMO ₄ I4 ₁ /amd	Tetragonal unit cell parameters (Å)	M ionic radius (Å)	O–Y distances (Å)	O−Y−O angles (°)
YVO ₄	a = 7.119 c = 6.289	0.355	2.30 (×4) 2.43 (×4)	156.0 63.3
YAsO ₄	a = 7.044 b = 6.248	0.335	2.300 (×4) 2.412 (×4)	155.6 63.8
YPO ₄	a = 6.888 b = 6.021	0.17	2.313 (×4) 2.374 (×4)	152.7 60.5

Table 1. Structural parameters of YMO₄ (M = V, P, As) zircon matrices.

The crystal growth of all three YMO₄ hosts (M = V, P, As) was performed with a Pb₂M₂O₇ flux [7, 8], according to the general chemical reaction:

$$yPb_2M_2O_7 + xY_2O_3 \rightarrow 2xYMO_4 + 2xPbO + (y - x)Pb_2M_2O_7$$

This is not a simple flux/compound system, since the final product is prepared at the expense of the flux itself. Therefore, it forms a rather complex system in which the relative proportions of PbO/M₂O₅ vary during the crystal growth. In order to improve the viscosity and the dissolving power of the flux, two more salts, MoO₃ and PbF₂, were added to the basic Pb₂M₂O₇ flux. All three compounds were prepared with 1% of doping Nd³⁺ ions.

The heating process was as follows: first, the starting powders $Pb_2M_2O_7$, MoO_3 , PbF_2 and Y_2O_3 were mixed and compressed as pellets, then introduced into a platinum crucible. The nominal compositions were approximately 60 wt% $Pb_2M_2O_7$, 6 wt% $Y_2O_3 + Nd_2O_3$, 30 wt% MoO_3 and 2 wt% PbF_2 . Then the temperature was raised to 1270 °C, at which fusion was achieved. After a soaking period of 12 h to ensure the dissolution and homogenization of Y_2O_3 in the melt, a slow cooling (2 °C h⁻¹) from 1270 °C to 800 °C produced the precipitation of expected Nd:YMO₄ crystals from the melt.

The crystals are easily separated by selective dissolution of the flux in dilute nitric acid. When performed in a relatively large crucible (100 cm³) they are well shaped, as rods or platelets with several mm² area and 1–2 mm thickness. In the crystals, large, clear and transparent zones are selected in which oriented slices are cut and polished to perform the optical studies reported hereafter. A browning of Nd:YVO₄ crystals was observed in contact with air or light, which has no influence on the optical behaviour of the Nd³⁺ ions.

3.2. Optical measurements

The absorption spectra were recorded at 4.2 K on a Cary 5-Varian spectrometer equipped with an Oxford Instruments helium flow cryostat, operating in the 180–3200 nm wavelength range. The near infrared fluorescence measurements were performed using a SOPRA SP-750 monochromator and a PbS cell associated with a lock-in amplifier. The excitation wavelength is selected at 810 nm from a cw titanium sapphire laser pumped by a 7 W argon ion laser.

3.3. EPR measurements

The EPR measurements were performed at X-band using a Bruker ER 220D spectrometer equipped with a liquid helium cryostat from Oxford Instruments. The crystals were mounted on a small Perspex sample holder in order to allow their orientation with respect to the magnetic field. The frequency was measured by a Systron Donner frequency-counter.

4. Results and discussion

4.1. Simulation of the energy level position

From the optical absorption spectra recorded at low temperature, all electronic transitions assigned to Nd^{3+} ions in the three hosts originate from the lowest Stark component of the ${}^{4}I_{9/2}$ level. In the case of Nd^{3+} ions in YVO₄ and YAsO₄, some extra lines in the spectra (figure 2) are assigned to vibronic side bands, associated with electronic transitions. All of them are located in the hypersensitive transition area, at 580 nm [9, 10]. A few other extra lines are also observed. Their positions are in agreement with those indicated in [11]. They correspond to Nd^{3+} ions perturbed by the presence of other Nd^{3+} ions in their vicinity. These Nd–Nd pairs can be evidenced by EPR measurement even at very low Nd^{3+} concentration (less than 1%).

Figure 2. Absorption spectra for Nd^{3+} ions in the vicinity of the ${}^{4}I_{9/2} \rightarrow {}^{4}G_{7/2} + {}^{2}K_{13/2} + {}^{4}G_{9/2}$ transition at 10 K in (a) YAsO₄, (b) YVO₄. The lines labelled by a star are vibronic transitions, which are not taken into account in the crystal field calculation.

For Nd³⁺ ions, almost only the ${}^{4}F_{3/2}$ level emits. The cf splittings of this level are $\Delta E = 18 \text{ cm}^{-1}$, 26 cm⁻¹ and 51 cm⁻¹ respectively for YVO₄, YAsO₄ and YPO₄. The ${}^{4}F_{3/2}$ level splitting being known from absorption, it is easy to determine the five (six) crystal field components of ${}^{4}I_{9/2}$ (${}^{4}I_{11/2}$) from the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ and ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transitions (figures 3(a) and (b)). The experimental energy levels obtained from the low temperature absorption and emission measurements are listed in table 2.

Although all interactions are included together in the secular determinant, it is more convenient for the description to separate the interactions operating between the elementary states of a configuration into two parts: first, the free-ion interactions are written according to the formalism of Carnall *et al* [12]:

$$H_{FI} = H_0 + \sum_{k=0,1,2,3} E^k (nf, nf) e_k + \zeta_{4f} A_{SO} + \alpha L (L+1) + \beta G(G_2) + \gamma G(R_7) + \sum_{\lambda=2,3,4,6,7,8} T^{\lambda} t_{\lambda}.$$
(1)

In this expression, E^k are the Racah parameters, ζ_{4f} is the spin-orbit coupling constant. e_k and A_{SO} represent the angular parts of the electrostatic repulsion and spin-orbit coupling respectively. α , β and γ are associated with the two-body interactions and the T^{λ} (Judd

Table 2. Energy levels (cm^{-1}) of Nd^{3+} in YVO₄, YAsO₄, and YPO₄ single crystals (* levels not considered in this adjustment).

2S+1 I .	YV	O ₄	YAs	YAsO ₄		O ₄
levels	\overline{E} (exp.)	<i>E</i> (cal.)	\overline{E} (exp.)	<i>E</i> (cal.)	\overline{E} (exp.)	<i>E</i> (cal.)
4I9/2	0	3	0	6	0	0
~ / =	110	130	111	133	117	129
	173	197	192	194	215	247
	228	243	232	249	293	250
	437	453	366	388	403	413
${}^{4}I_{11/2}$	1 966	1958	1977	1 963	1 989	1 981
	1 987	1980	2 0 0 3	1 987	2023	2019
	2046	2047	2042	2 0 3 7	2050	2043
	2067	2064	2068	2066	2 0 5 9	2057
	2157	2158	2123	2 1 2 3	2141	2 1 4 0
	2 1 8 0	2177	2147	2 1 4 5	2177	2 173
${}^{4}I_{13/2}$	3 908	3 895	3 9 3 3	3916	3 9 3 1	3 926
	3 9 3 1	3918	3944	3 928	3973	3 958
	3 977	3 975	3 989	3 981	4004	3 997
	4042	4042		4 0 4 9	4 0 3 0	4 0 3 4
	4 087	4 0 8 6	4056	4 0 5 6	4066	4 0 6 2
	4 1 57	4151	4125	4 1 2 8	4151	4 1 5 2
	4 1 5 9	4163	4131	4 1 2 8	4160	4 157
${}^{4}I_{15/2}$	5 831	5 822	5 875	5 876	5 829	5 834
	5 868	5 869	5 885	5 883	5925	5918
	5917	5918	5947	5 945	_	5 965
	6 0 6 4	6070	6059	6 0 6 5	6080	6 0 8 6
		6183	—	6185	—	6172
	_	6250	6217	6 2 2 0	6247	6248
	6261	6265	—	6 2 2 2	—	6 2 5 5
	6317	6316	6279	6277	6316	6317
${}^{4}F_{3/2}$	11 368	11 344	11414	11 402	11413	11 410
	11 386	11 370	11440	11 428	11464	11 445
${}^{4}F_{5/2}$	12 362	12331	12424	12 399	12428	12 430
	12 400	12383	12454	12 436	12447	12 4 3 0
+	12411	12415	12468	12 479	12466	12 493
	12 479	12 501	12 501	12 545	12475	12 545
$^{2}\text{H2}_{9/2}$	12 496	12 540	12 548	12 569	12494	12 555
	12 536	12 542	12 595	12 575	12 523	12615
	12 600	12652	12638	12 668	12 587	12 671
	12 686	12 661	12710	12 684	12728	12718
${}^{4}F_{7/2}$	13 318	13 325	13 378	13 390	13 373	13 387
+	13 341	13 344	13 398	13 405	13 388	13 404
${}^{4}S_{3/2}$	13 392	13 397	13 422	13 439	13 483	12 491
	13 457	13 441	13 503	13 504	_	13 505
	13 464	13 449	13 506	13 510	13 5 19	13 525
	_	13 471	13511	13 512	_	13 525
⁴ F _{9/2}	14 572	14 567	14 635	14 633	14 639	14 640
• / •	14 593	14 587	14 646	14 645	_	14 643
	14 629	14 626	14 680	14 685	14730	14728
	14713	14705	14759	14756	14762	14763
	4 4 5 6 4	14722	14770	14777		14560

Table 2. (Continued)

2S+1 I	YV	O_4	YAs	YAsO ₄		O_4
levels	\overline{E} (exp.)	<i>E</i> (cal.)	\overline{E} (exp.)	<i>E</i> (cal.)	\overline{E} (exp.)	E (cal.)
$^{2}\text{H2}_{11/2}$ *	15 764	15773	15 814	15 828	15 817	15 834
/-	15798	15 787	15 846	15839	15 850	15 844
	15 854	15 803	_	15 856	15 895	15 863
	_	15814	15 896	15 861	15 903	15 874
	15932	15814	15972	15862		15 882
	15966	15 841	16 000	15 883	16008	15 891
$^{2}G1_{7/2}$	16824	16823	16968	16971	16985	16982
.,	16958	16975	17 054	17065	17 065	17 052
+	16976	17 000	17 117	17111	17 115	17116
	17 170	17 172	17 205	17210	17 210	17218
$^{4}G_{5/2}$	17 205	17 193	_	17 228	_	17 232
- / -		17 234	17 273	17 284	17 285	17 297
	17 251	17 239	17 344	17313	17 356	17 321
$^{4}G_{7/2}$	18744	18747	18 897	18855		18844
,,2	18834	18817	18937	18908	18 891	18915
+	18856	18865	18970	18961	18963	18953
	18922	18935	19 009	19007	19 030	19 023
$^{2}K_{13/2}$	19216	19 193	19 309	19 294	19329	19310
	19254	19 225	_	19 324	_	19370
+	19306	19 296	19 403	19409	19 396	19403
	19327	19320	19 427	19427	19414	19407
${}^{4}G_{9/2}$		19 347	19443	19 443	_	19440
,	13 359	19354	_	19 460	19467	19466
	19 390	19 380	_	19461	_	19487
	19431	19436	19 551	19550	—	19516
	19 554	19 522	19 577	19 581	19 542	19 554
	19576	19 554	19616	19626	19 592	19 575
	_	19 624	19 658	19 667	19656	19657
	19644	19635	19 690	19678	19681	19676
² G1 _{9/2}	—	20746		20 838	_	20845
	20779	20774	20 869	20850	—	20851
+	20838	20849	_	20913	20938	20916
	20868	20888	20 948	20951	20952	20937
² D1 _{3/2}	20905	20917	20967	20960	21 027	20 994
	—	20973	21 108	21 101	_	21 104
+	21 006	20997	—	21 1 1 2	21 152	21 1 39
	21 1 34	21 144	21 241	21 282	21 251	21 277
4	21 209	21 230	21 305	21 332	21 325	21 349
$^{4}G_{11/2}$	21 235	21 250		21 360	21 367	21 379
		21 252	21 365	21 363		21 398
+	21 299	21 323	21450	21450	21410	21420
217	21 393	21412		21 504		21463
$-K_{15/2}$	21 455	214//	21 551	21 544		21 496
	214/8	21407	21 595	21 556	21 561	21 5 54
		21 502	21 383	21 390	21 301	21 509
	_	21 343 21 551	21 619	21 010	_	21378
	21 573	21 551	21 651	21 6/3	_	21 027
	<u> </u>	21 500		21 661	21 677	21 679
	21 604	21 607	21 671	21 683		21 682
$^{2}P_{1/2}$	23.041	23.051	23 155	23 151	23 163	23 156
▲ 1/2	23 041	25 051	23 133	23 131	25 105	25 150

Table 2. (Continued)

2S+1 r	YV	O ₄	YAs	YAsO ₄		YPO ₄		
levels	E (exp.)	<i>E</i> (cal.)	E (exp.)	<i>E</i> (cal.)	E (exp.)	<i>E</i> (cal.)		
² D1 _{5/2}	23 598	23 577	23 682	23 678	23 681	23 696		
,	23 613	23 627	23722	23 7 30	23710	23710		
	23 638	23 656	23746	23 749	23782	23 773		
$^{2}P_{3/2}$	25 939	25919	26049	26045	26052	26054		
-,-	25 963	25 959	36088	26 083	26 093	26 083		
$^{4}D_{3/2}$	27 609	27 599	27 856	27 847	27 811	27 794		
- 7	27 643	27 642	27 896	27 902	27914	27 912		
$^{4}D_{5/2}$		27753	27 992	27 979	28 0 5 5	28 0 4 2		
	27 790	27 772		28 024	_	28 071		
	28 002	27 987	28 2 30	28 217	28 181	28 172		
${}^{4}D_{1/2}$	28 188	28 200	28 4 48	28 468	28 4 5 1	28478		
${}^{2}I_{11/2}$	28 802	28814	29 007	29 012	_	29 020		
,		28 822		29 0 26	29 0 4 2	29 022		
		28963	_	29 190	_	29 148		
	29076	29 093	_	29 25 1	_	29 152		
		29 1 24	29 332	29 320	—	29 342		
	_	29 196	_	29 344	_	29 358		
$^{2}L_{15/2}$	29 679	29710	29 884	29 894	29811	29 782		
- ,	29 729	29724	_	29 904	29 904	29 933		
+	_	29725	_	29 942	_	29 942		
	29 769	29774	29 961	29 984	29 958	29 970		
$^{4}D_{7/2}$		29787	—	30 0 2 3	—	30 008		
	—	29 790	—	30 0 4 2	—	30 0 39		
		29867		30 0 5 5	30 0 45	30 047		
	29 886	29884	30 067	30 067		30 055		
		29913	30126	30 105	30152	30 143		
	29 944	29 963		30170		301/3		
	29 990	29974	_	20 21 4	20 217	30179		
2.	30070	30 004		30 214	30 217	30 197		
$^{2}I_{13/2}$	_	30 259		30 44 3	30421	30 4 36		
		30 264	30470	30 456		30 452		
	_	20 4 4 5	20 506	20,601	20.540	30 323 20 544		
		30 443	30,590	30.659	30 596	30 599		
	_	30497		30.663		30 703		
		30.541	_	30 696	_	30717		
² I 17/2	_	31 235	_	31 4 2 2	_	31.628		
D 17/2		31 240		31 425		31 455		
		31 255	_	31 434	_	31 465		
	_	31 257	_	31 449	_	31 472		
		31 361	_	31 510		31 489		
		31 381		31 530	_	31 507		
		31 386	—	31 548	_	31 522		
	_	31 460	—	31 604	_	31 624		
	—	31 521	_	31 655	—	31 656		
² H1 _{9/2}			32 654	32 667	_	32 645		
. ,			_	32707		32 664		
			—	32745	_	32 692		
			—	32759	—	32736		
			_	32815	—	32 800		

2S+1 L .	YV	O ₄	YAs	O_4	YPO_4	
levels	\overline{E} (exp.)	<i>E</i> (cal.)	\overline{E} (exp.)	<i>E</i> (cal.)	\overline{E} (exp.)	<i>E</i> (cal.)
$2D2_{3/2}$			33 086	33 101	33 069	33 092
- /			33 121	33 121	33 160	33 165
$^{2}D2_{3/2}$			33 921	33 920	_	33 896
-/-			_	33 980	_	33 974
+			_	33 983	_	34 009
			34 092	34 07 1	_	34 030
$^{2}\text{H1}_{11/2}$			_	34117	_	34 040
,			_	34131	_	34 097
			34 162	34161	_	34 175
			_	34 220	_	34 206
			—	34 263	—	34 263
$^{2}F2_{5/2}$					38167	38 168
5/2						38 253
					38 2 50	38 254

Table 2. (Continued)

parameters) with the three-body interactions. Fourteen free-ion parameters were varied, i.e. E^0 , E^1 , E^2 and E^3 Racah parameters; α , β and γ Trees parameters, T^2 , T^3 , T^4 , T^6 , T^7 and T^8 for the Judd parameters and ζ_{4f} . γ , T^2 and T^8 are fixed to standard values, because these parameters are only important for levels not observed here. Other interactions like spin–spin and spin–other orbit interaction, operating through M^k , P^k parameters, are not included in the simulation, the effect of these interactions being weaker for ions at the beginning of the rare earth series. Following the Wybournes' formalism [13], the crystal field Hamiltonian is expressed as a sum of products of crystal-field parameters and spherical harmonics:

$$H_{CF} = \sum_{k=2}^{4,6} \sum_{q=0}^{k} [B_q^k (C_q^k + (-1)^q C_{-q}^k) + iS_q^k (C_q^k - (-1)^q C_{-q}^k)].$$
(2)

The number of non-zero crystal-field parameters B_q^k and S_q^k , real and imaginary parts, depends on the site symmetry of the lanthanide ion in the structure. The D_{2d} crystal-field Hamiltonian involves five non-zero real B_q^k crystal-field parameters, namely B_0^2 , B_0^4 , B_4^4 , B_0^6 and B_4^6 . The simulation of the energy level scheme was performed on the 96 (102, 90) experimental levels among the 182 possible Kramers doublets of the 4f³ configuration, in the case of YVO₄ (YAsO₄, YPO₄). With a starting set of phenomenological free ion and cf parameters taken from [14], the rms standard deviation, taken as the figure of merit for the simulation, decreases rapidly to good final values (table 3). However, in their study on Pr^{3+} and Nd³⁺ in YPO₄ and LuPO₄ zircon-type hosts, Hayhurst et al [15] rejected some lines, supposed to be vibronic side bands. For example, they did not consider the absorption line at 17 351 cm⁻¹, on the high-energy side of the hypersensitive transition ${}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2} + {}^{2}G_{7/2}$ in Nd:YPO₄. We have observed this line with relatively high intensity at 17356 cm^{-1} for YPO₄ (figure 4) and this line has been well fitted in our simulation. Similarly the corresponding line (marked with a star in figure 4) was also observed and well fitted by the simulation for Nd:YAsO₄ (at 17344 cm⁻¹) as well as for Nd:YVO₄ (at 17251 cm⁻¹). This is also in agreement with the NdVO₄ absorption spectrum reported in [14]. The simulation performed in [15] took into account only 50 levels whereas we consider here 90 levels. As a

Table 3. Free ion and crystal field parameters for Nd^{3+} ions in YMO₄ (M = V, P, As) single crystals (cm⁻¹). The parameters between square brackets are kept constant during the adjustment and the numbers after the parameters represent the uncertainties. The average crystal field strength (cm⁻¹) is calculated from the energy levels and from the simple overlap model (SOM).

	YVO	4	YAsO	O ₄ YPO ₄		4
Parameters	Phenomological	SOM calculated	Phenomological	SOM calculated	Phenomological	SOM calculated
E^0	23 357 (1)		23 523 (1)		23 520 (1)	
E^1	4757 (1)		4788 (1)		4780 (1)	
E^2	23.05 (0.01)		23.59 (0.01)		23.5 (0.01)	
E^3	478.95 (0.07)		486.94 (0.07)		484.66 (0.07)	
α	20.91 (0.03)		20.69 (0.03)		20.38 (0.03)	
β	-647 (3)		-601 (3)		-602 (3)	
γ	[1500]		[1500]		[1500]	
T^2	[244]		[152]		[202]	
T^3	36 (2)		41 (2)		41 (2)	
T^4	124 (2)		101 (2)		94 (2)	
T^6	-278 (5)		-260 (5)		-262 (5)	
T^7	325 (5)		306 (5)		316 (5)	
T^8	[337]		[138]		[205]	
ξ	869.1 (0.6)		871.4 (0.6)		870.9 (0.6)	
B_{0}^{2}	-200 (13)	-312	-164 (13)	-68	240 (9)	436
B_0^{4}	628 (34)	476	237 (41)	494	108 (38)	503
B_4^{4}	-1136 (17)	-1405	-1071 (15)	-1371	-1006 (18)	-1303
$B_0^{\dot{6}}$	-1233 (25)	-924	-1043 (27)	-956	-1190 (27)	-903
B_4^{6}	149 (32)	-237	-10 (27)	178	-90 (27)	3
N_v	2401	2647	2098	2558	2091	2522
Number						
levels	96		102		90	
σ	16.2		15.4		15.7	

first conclusion, a good agreement between experimental and calculated levels is observed. The mean deviation is 16.2, 15.4 and 15.7 cm⁻¹ for YVO₄, YAsO₄ and YPO₄ respectively (see table 3).

4.2. Experimental determination of the g factor and comparison with cf calculations

Further tests of the accuracy of the cf parameters can be performed through a comparison of the magnetic properties associated with the lowest ${}^{4}I_{9/2}$ Kramers doublet. Indeed, in a crystal field of D_{2d} or lower symmetry, the ${}^{4}I_{9/2}$ energy level splits into five Kramers doublets. The first excited Stark level being 110 cm⁻¹ above the fundamental one, only the ground level is populated at liquid helium temperature. Under an external magnetic field, this doublet splits into two levels and, according to the usual interpretation of the electron paramagnetic resonance (EPR) theory, this system can be described as having an effective spin of S = 1/2. Using a fitting procedure for all the different transitions observed at different angles [18], the spin Hamiltonian parameters are determined and reported in table 4. The results are similar to those previously reported [16, 17]. From the experimental *g*-tensor principal values, the wave functions of the lowest Kramers doublet can be obtained assuming that the term-mixing and the *J*-mixing are negligible (the lowest Kramers doublet

		g-factor values		Calculated wave function composition		
YMO ₄	Calculated from CFC	Experimental from EPR	Difference (%)	From cf ^a	From EPR	
YVO ₄	$g_{\parallel} = 0.94$ $g_{\perp} = 2.46$	$g_{\parallel} = 0.915 \pm 0.004$ $g_{\perp} = 2.361 \pm 0.003$	3 4	$\begin{array}{c} 64\% {}^{4}I_{9/2}, \frac{1}{2}\rangle \\ 31\% {}^{4}I_{9/2}, -\frac{7}{2}\rangle \\ 1.7\% {}^{2}H_{9/2}, \frac{1}{2}\rangle \end{array}$	$\begin{array}{c} 71\% \mid {}^{4}I_{9/2}, \frac{1}{2} \rangle \\ 28\% \mid {}^{4}I_{9/2}, -\frac{7}{2} \rangle \\ 1\% \mid {}^{4}I_{9/2}, \frac{9}{2} \rangle \end{array}$	
YAsO4	$g_{\parallel} = 1.63$ $g_{\perp} = 2.16$	$g_{\parallel} = 1.874 \pm 0.002$ $g_{\perp} = 1.938 \pm 0.001$	13 12	$\begin{array}{c} 50\% {}^{4}I_{9/2}, \frac{1}{2} \rangle \\ 45\% {}^{4}I_{9/2}, - \frac{7}{2} \rangle \\ 2\% {}^{4}I_{9/2}, \frac{9}{2} \rangle \end{array}$	$\begin{array}{c} 54\% {}^{4}I_{9/2}, \frac{1}{2} \rangle \\ 45\% {}^{4}I_{9/2}, - \frac{7}{2} \rangle \\ 1\% {}^{4}I_{9/2}, \frac{9}{2} \rangle \end{array}$	
YPO ₄	$g_{\parallel} = 2.90$ $g_{\perp} = 1.42$	$g_{\parallel} = 3.101 \pm 0.005$ $g_{\perp} = 1.217 \pm 0.007$	6 17	$\begin{array}{c} 65\% {}^{4}I_{9/2},-\frac{7}{2}\rangle \\ 28\% {}^{4}I_{9/2},\frac{1}{2}\rangle \\ 2\% {}^{4}I_{9/2},\frac{9}{2}\rangle \end{array}$	$\begin{array}{c} 66\% {}^{4}I_{9/2}, -\frac{7}{2} \rangle \\ 33\% {}^{4}I_{9/2}, \frac{1}{2} \rangle \\ 1\% {}^{4}I_{9/2}, \frac{9}{2} \rangle \end{array}$	

Table 4. Experimental and calculated spin Hamiltonian parameters and wave function composition extracted from the crystal field calculations and from EPR measurements in Nd:YMO₄ (M = V, P, As).

^a Only the three principal components are taken into account.

is supposed to be purely ${}^{4}I_{9/2}$). This could be experimentally verified, if the $A_{\parallel}g_{\perp}/A_{\perp}g_{\parallel}$ ratio is very close to one [19]. In our measurements, these ratios are 1.1 for YVO₄, 1.0 for YAsO₄ and 1.0 for YPO₄ [18]. The wave functions of the lowest Kramer doublet are reported in table 4.

Alternatively, these g_{\parallel} and g_{\perp} EPR parameters and the wave functions of the lowest Kramers doublet of the ${}^{4}I_{9/2}$ manifold can be calculated using the cf parameters. This can be done by including the magnetic interaction through the $L + g_eS$ tensor operator, either included in the Hamiltonian before the secular determinant diagonalization, or as a perturbation operating on the ground state wave function. The latest approximation is used in this calculation and the results are gathered in table 4. A rather small discrepancy (average value of 9%) is obtained between the experimental and the theoretical g-tensor principal values. The results are even better with the wave function composition, as a 7% discrepancy is obtained for Nd:YVO₄, 4% and 5% for Nd:YAsO₄ and Nd:YPO₄ respectively. The cf calculations to verify the absence of J-mixing and term-mixing. As reported in table 4, only in the case of Nd:YVO₄ a 2% value of term mixing (${}^{2}H_{9/2}$ level) is observed while, for the two other hosts, the wave function has a purely ${}^{4}I_{9/2}$ character.

4.3. Calculation of the crystal field parameters by the simple overlap model

The simple overlap model (SOM) developed by Malta [20] has been previously applied to reproduce the phenomenological cf parameters of a great number of lanthanide and 3d compounds [21]. The SOM supposes that the crystal field effect can be calculated using a potential produced by an effective charge distribution over a small region, situated around the mid-point of the metal-ligand distance. It calculates the B_a^k parameters with the relation:

$$B_q^k = \rho \left(\frac{2}{1\pm\rho}\right)^{k+1} A_q^k \langle r^k \rangle \tag{3}$$

where A_q^k is the lattice sum of neighbours belonging to the first coordination sphere associated with an effective charge, $\langle r^k \rangle$ are the radial integrals [22], ρ is the overlap

Figure 3. Fluorescence spectra of Nd³⁺ ions at 10 K in (i) YVO₄, (ii) YPO₄, (iii) YAsO₄. (a) ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ transition, (b) ${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transition.

between the 4f orbital of the central ion and the s and p orbitals of the ligand, the value of which varies as a function of the metal–ligand distance R: $\rho = \rho_0 (R_0/R)^{3.5}$, R_0 being the shortest metal–ligand distance. For the rare earth, ρ lies between 0.04 and 0.08 [21]. The \pm sign in equation (3) characterizes the displacement of the charge barycentre from the middle of the metal–oxygen distance [22]. When applied to the isostructural series here studied, a good agreement is obtained for the cf values (see table 3) as well as for their variation as a function of the unit cell parameters of YMO₄ (M = V, As, P). An effective charge of -0.8 for the oxygen and an overlap of 0.04 is found, which indicates a relatively covalent Nd–O bonding.

This demonstrates that an *a priori* calculation can be performed with the knowledge of the coordination, the site symmetry and the distances between the RE^{3+} and the first coordinated neighbours. It is then possible to estimate the magnitude of the crystal field strength.

4.4. Crystal field strength

It has been shown previously that there is a good agreement between experimental and calculated energy level diagrams for the three neodymium activated hosts. The similarities

Figure 4. Nd^{3+} ions ${}^{4}I_{9/2} \rightarrow {}^{2}G_{7/2} + {}^{4}G_{5/2}$ absorption spectra at 10 K in (a) YVO₄, (b) YPO₄, (c) YAsO₄. The lines labelled by a star are taken into account in our simulation but not in [15].

of the *g*-factors and ground state Kramers wave functions, deduced from the cf calculation and measured by EPR, confirm that the sets of crystal field parameters given in table 3 describe accurately the behaviour of Nd^{3+} in YMO₄ matrices. This allows going further into a discussion of the structure–crystal field strength relationship.

For the three hosts, the crystal field strength can be estimated according to [23]:

$$N_{v} = \left[\sum_{k \neq 0, q} \frac{4\pi}{2k+1} (B_{q}^{k})^{2}\right]^{1/2}.$$
(4)

The values reported in table 3 are calculated from the two sets of crystal field parameters respectively deduced from the energy level diagram and calculated with the SOM theory. A very good agreement between experimental and calculated N_v parameters (less than 18% discrepancy) is obtained; N_v slightly increases from YPO₄ to YAsO₄. A comparison of the structural parameters (table 1) and the N_v values indicates that there is no simple relation between the mean O–Y distances and the N_v parameters. It means that the bond angles may have a predominant effect.

Another very important characteristic of these specific crystal-field materials is that they correspond to low self-quenching compounds [23]. In general, high activator Nd³⁺ concentration leads to poor quantum efficiency for emission as Nd³⁺–Nd³⁺ interactions, generally by non-radiative energy transfer (energy migration, cross relaxation), are in competition with the radiative emission. These energy transfers are reduced when the overlap corresponding to the transitions ${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$ and ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ is small [23, 24]. It is the case in the low crystal field strength compounds.

5. Conclusion

In this study, the crystal field analysis of Nd^{3+} ions substituted in three zircon type hosts is reported. Crystals have been synthesized under the same experimental conditions, using a flux method. A good agreement is obtained between the cf parameters adjusted from the experimental optical absorption measurements and those calculated using the simple overlap model.

Electron paramagnetic resonance is also used to probe the accuracy of the crystal field calculations. The correlated energy level diagrams for each host allow to identify the extra lines of the absorption spectra that are not accounted for by purely electronic transition and are, mainly, of vibronic origin.

A low crystal field strength appears to be a clue for laser materials as a very important consequence is the resulting high values of the absorption cross sections. Several Stark sub-levels of the Nd^{3+ 4}I_{9/2} ground state are gathered in a very narrow energy range and at room temperature, when several of these sublevels are populated, a large number of transitions overlap, leading to a very high absorption coefficient. For sake of comparison, the cf strength is twice higher in the Nd:YAG than in the Nd:YVO₄ and this leads to an absorption cross section six times larger in the latter compound. This leads to a lower overlap of the energy levels engaged in the luminescence processes, and therefore to a lower quenching of the Nd³⁺ luminescence.

Finally, Nd:YPO₄ and Nd:YAsO₄ materials present spectroscopic properties very close to Nd:YVO₄ ones. Therefore further investigation of these two hosts which may also exhibit interesting laser properties should be performed in the future.

References

- [1] Feugnet G, Bussac C, Larat C, Schwarz M and Pocholle J P 1994 Opt. Lett. 20 157
- [2] Bernard J E and Alcock A J 1993 Opt. Lett. 18 968
- [3] Matthews D G, Boon J R, Conroy R S and Sinclair B D 1996 J. Mod. Opt. 43 1079
- [4] Chai B H T, Loutts G, Lefaucheur J, Zhang X X, Hong P, Bass M, Shcherbakov I A and Zagumennyi I A 1994 OSA Proc. Adv. Solid State Laser 20 41
- [5] Anderson F G, Summers P L, Weidner H, Hong P and Peale R E 1994 Phys. Rev. B 50 14802
- [6] Guillot-Noël O, Viana B, Aka G, Kahn-Harari A, Gourier D and Vivien D 1997 J. Lumin. 72 195
- [7] Wanklyn B M 1981 J. Cryst. Growth 54 610
- [8] Smith S H and Wanklyn B M 1974 J. Cryst. Growth 21 23
- [9] Antic-Fidancev E, Lemaître-Blaise M and Caro P 1984 C. R. Acad. Sci., Paris 298 575
- [10] Antic-Fidancev E, Lemaître-Blaise M, Caro P, Piriou B and Strek W 1985 Proc. Int. Symp. on Rare Earth Spectroscopy (Wroclaw: World Science) p 354
- [11] Guillot-Noël O 1997 These de l'Université P et M Curie Paris 6
- [12] Carnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443
- [13] Wybourne B G 1965 Spectroscopic Properties of Rare Earths (New York: Wiley)
- [14] Antic-Fidancev E, Hölsä J, Lemaître-Blaise M and Porcher P 1991 J. Phys.: Condens. Matter 3 6829
- [15] Hayhurst T, Shalimoff G, Conway J G, Edelstein N, Boatner L A and Abraham M M 1982 J. Chem. Phys.
- 76 3960 [16] Ranon U 1968 Phys. Lett. 28A 228
- [17] Abraham M M, Boatner L A, Ramey J O and Rappaz M 1983 J. Chem. Phys. 78 3
- [18] Guillot-Noël O, Simons D and Gourier D 1998 J. Phys. Chem. Solids submitted
- [19] Abragam A and Bleaney B 1971 Résonance Paramagnétique Électronique des Ions de Transition vol 5 (Paris: Presses Universitaires de France) p 317
- [20] Malta O L 1982 Chem. Phys. Lett. 87 27
 Malta O L 1982 Chem. Phys. Lett. 88 353
- [21] Porcher P, Couto dos Santos M and Malta O L 1998 unpublished results
- [22] Freeman A J and Desclaux J P 1979 J. Magn. Magn. Mater. 12 11
- [23] Auzel F 1980 Radiationless Processes ed B Di Bartolo B-62 p 213
- [24] Viana B, Lejus A M, Saber D, Duxin N and Vivien D 1994 Opt. Mater. 3 307